
Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 1

Blob URI Phishing Attack
Introduction

Blob URI-based phishing attacks represent a sophisticated and stealthy method of credential theft
that bypasses traditional security mechanisms. By leveraging browser-native features like blob and
URL.createObjectURL, attackers can craft convincing fake login pages that never touch the network,
making detection significantly harder. This article outlines the technical mechanics, real-world
applications, detection challenges, and defensive strategies against Blob URI–based phishing attacks.

Phishing remains one of the most effective tools in a cybercriminal's arsenal. While traditional
phishing involves redirecting users to lookalike domains, modern attackers are increasingly adopting
in-memory attack vectors using Blob URIs. These techniques exploit native browser features to
present fake but convincing login pages without relying on external hosting.

What Is a Blob URI?

A Blob URI is a special URL generated in the browser using JavaScript:

const blob = new Blob([htmlContent], { type: 'text/html' });
const url = URL.createObjectURL(blob);

The resulting URL looks like:

blob:https://legitdomain.com/550e8400-e29b-41d4-a716-446655440000

This URI is generated locally in the browser and does not correspond to any real network resource.
The origin shown in the blob URI (e.g., https://legitdomain.com) is simply the origin of the page that
created the blob — not where the data is hosted. This makes blob URIs appear trustworthy even
though their contents are entirely controlled by JavaScript running in the browser.

Anatomy of a Blob URI Phishing Attack

A typical attack sequence looks like this:

 The attacker injects JavaScript into a trusted page (via XSS or extension abuse).
 The script constructs a fake login page using HTML and JavaScript.
 A Blob object is created and converted into a blob URI.
 The fake page is opened in a new window/tab using window.open(blobUrl).
 Credentials are captured and sent via fetch() to the attacker's server.
 Optionally, the user is redirected to the real login page to reduce suspicion.

Why It’s Dangerous

In-memory execution: The payload never touches the disk or network.

 Origin spoofing: The blob URI shows the origin of the parent page.
 No DNS or certificate indicators: Users can’t rely on padlocks or URL bars.
 Hard to detect with traditional AV/WAFs: There’s no external domain to flag.

Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 2

Real-World Examples

 Malicious Chrome extensions have used blob URIs to load phishing forms in-memory.
 Researchers have seen phishing kits delivering Office 365 and Google login clones via blob-

based popups.
 Advanced malware loaders use encrypted payloads stored in Blob objects to bypass disk-

based scanners.

Real Example of a Phishing Email based on HTML with JavaScript (obfuscated):

Use of Encrypted and Obfuscated JavaScript

While not required, encryption and obfuscation are often used together to:

 Obfuscate the creation of the Blob URI itself (e.g., hiding new Blob(...) and
URL.createObjectURL)

 Encrypt the phishing HTML or script content
 Delay detection and slow reverse engineering
 Bypass static analysis tools

Common techniques include:

 Base64 encoding of the phishing payload (atob(...))
 AES or XOR encryption with decryption done at runtime
 Use of dynamic code execution via eval(), Function(), or setTimeout("...")
 Obfuscation tools that rename variables, compress code, and flatten logic

Example:

let e = atob("PGZvcm0+PHVzZXI+PC9mb3JtPg==");
let b = new Blob([e], { type: 'text/html' });
let u = URL.createObjectURL(b);
window.open(u);

This makes analysis and automated detection significantly harder.

Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 3

Detection Challenges

 blob: URLs aren’t logged by firewalls or antivirus software.
 Browser telemetry may not reveal the blob's contents.
 Users can’t see anything suspicious unless trained to examine full URLs.

Defense Strategies

a. Technical Controls:

Enforce a strict Content Security Policy (CSP):

Content-Security-Policy: default-src 'self'; script-src 'self'; object-src
'none'; base-uri 'none'; worker-src 'none'; child-src 'none'; frame-src
'none';

Disallow blob: and data: URIs in script-src, frame-src, etc.

Monitor browser extensions and enforce enterprise policies.

b. Endpoint Detection and Response (EDR):

 Look for suspicious browser activity and outbound POSTs to unknown domains.
 Flag use of eval(), Function(), or atob() inside browsers.

c. User Awareness:

 Train users to avoid entering credentials unless the URL is clearly HTTPS with a known
domain.

 Encourage password manager use (they won’t autofill on fake pages).

d. Advanced Hunting (for Microsoft Defender):

Sample Kusto Query:

DeviceNetworkEvents
| where InitiatingProcessFileName in~ ("chrome.exe", "msedge.exe")
| where RemoteUrl has_any (".php", "/login", "/submit")
| where RemoteUrl !contains "yourdomain.com"

Conclusion

Blob URI phishing is a stealthy, sophisticated technique that takes advantage of browser trust and in-
memory execution. While not yet mainstream, its usage is growing in targeted attacks and advanced
phishing kits. Organizations must respond with a mix of technical controls, user education, and
active monitoring to defend against this modern phishing vector.

