
Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 1

Blob URI Phishing Attack
Introduction

Blob URI-based phishing attacks represent a sophisticated and stealthy method of credential theft
that bypasses traditional security mechanisms. By leveraging browser-native features like blob and
URL.createObjectURL, attackers can craft convincing fake login pages that never touch the network,
making detection significantly harder. This article outlines the technical mechanics, real-world
applications, detection challenges, and defensive strategies against Blob URI–based phishing attacks.

Phishing remains one of the most effective tools in a cybercriminal's arsenal. While traditional
phishing involves redirecting users to lookalike domains, modern attackers are increasingly adopting
in-memory attack vectors using Blob URIs. These techniques exploit native browser features to
present fake but convincing login pages without relying on external hosting.

What Is a Blob URI?

A Blob URI is a special URL generated in the browser using JavaScript:

const blob = new Blob([htmlContent], { type: 'text/html' });
const url = URL.createObjectURL(blob);

The resulting URL looks like:

blob:https://legitdomain.com/550e8400-e29b-41d4-a716-446655440000

This URI is generated locally in the browser and does not correspond to any real network resource.
The origin shown in the blob URI (e.g., https://legitdomain.com) is simply the origin of the page that
created the blob — not where the data is hosted. This makes blob URIs appear trustworthy even
though their contents are entirely controlled by JavaScript running in the browser.

Anatomy of a Blob URI Phishing Attack

A typical attack sequence looks like this:

 The attacker injects JavaScript into a trusted page (via XSS or extension abuse).
 The script constructs a fake login page using HTML and JavaScript.
 A Blob object is created and converted into a blob URI.
 The fake page is opened in a new window/tab using window.open(blobUrl).
 Credentials are captured and sent via fetch() to the attacker's server.
 Optionally, the user is redirected to the real login page to reduce suspicion.

Why It’s Dangerous

In-memory execution: The payload never touches the disk or network.

 Origin spoofing: The blob URI shows the origin of the parent page.
 No DNS or certificate indicators: Users can’t rely on padlocks or URL bars.
 Hard to detect with traditional AV/WAFs: There’s no external domain to flag.

Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 2

Real-World Examples

 Malicious Chrome extensions have used blob URIs to load phishing forms in-memory.
 Researchers have seen phishing kits delivering Office 365 and Google login clones via blob-

based popups.
 Advanced malware loaders use encrypted payloads stored in Blob objects to bypass disk-

based scanners.

Real Example of a Phishing Email based on HTML with JavaScript (obfuscated):

Use of Encrypted and Obfuscated JavaScript

While not required, encryption and obfuscation are often used together to:

 Obfuscate the creation of the Blob URI itself (e.g., hiding new Blob(...) and
URL.createObjectURL)

 Encrypt the phishing HTML or script content
 Delay detection and slow reverse engineering
 Bypass static analysis tools

Common techniques include:

 Base64 encoding of the phishing payload (atob(...))
 AES or XOR encryption with decryption done at runtime
 Use of dynamic code execution via eval(), Function(), or setTimeout("...")
 Obfuscation tools that rename variables, compress code, and flatten logic

Example:

let e = atob("PGZvcm0+PHVzZXI+PC9mb3JtPg==");
let b = new Blob([e], { type: 'text/html' });
let u = URL.createObjectURL(b);
window.open(u);

This makes analysis and automated detection significantly harder.

Author: G.Moresi Date: 15.5.2025

File: Cybersecurity_Blob_URL_whitepaper 3

Detection Challenges

 blob: URLs aren’t logged by firewalls or antivirus software.
 Browser telemetry may not reveal the blob's contents.
 Users can’t see anything suspicious unless trained to examine full URLs.

Defense Strategies

a. Technical Controls:

Enforce a strict Content Security Policy (CSP):

Content-Security-Policy: default-src 'self'; script-src 'self'; object-src
'none'; base-uri 'none'; worker-src 'none'; child-src 'none'; frame-src
'none';

Disallow blob: and data: URIs in script-src, frame-src, etc.

Monitor browser extensions and enforce enterprise policies.

b. Endpoint Detection and Response (EDR):

 Look for suspicious browser activity and outbound POSTs to unknown domains.
 Flag use of eval(), Function(), or atob() inside browsers.

c. User Awareness:

 Train users to avoid entering credentials unless the URL is clearly HTTPS with a known
domain.

 Encourage password manager use (they won’t autofill on fake pages).

d. Advanced Hunting (for Microsoft Defender):

Sample Kusto Query:

DeviceNetworkEvents
| where InitiatingProcessFileName in~ ("chrome.exe", "msedge.exe")
| where RemoteUrl has_any (".php", "/login", "/submit")
| where RemoteUrl !contains "yourdomain.com"

Conclusion

Blob URI phishing is a stealthy, sophisticated technique that takes advantage of browser trust and in-
memory execution. While not yet mainstream, its usage is growing in targeted attacks and advanced
phishing kits. Organizations must respond with a mix of technical controls, user education, and
active monitoring to defend against this modern phishing vector.

